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Abstract. We investigate the validity of the equivalence principle along paths in gravitational
theories based on derivations of the tensor algebra over a differentiable manifold. We prove
the existence of local bases, called normal, in which the components of the derivations vanish
along arbitrary paths. All such bases are explicitly described. The holonomicity of the normal
bases is considered. The results obtained are applied to the important case of linear connections
and their relationship with the equivalence principle is described. In particular, any gravitational
theory based on tensor derivations which obeys the equivalence principle along all paths, must
be based on a linear connection.

1. Introduction

A well known classical result is the existence of local coordinates in which the components
of a symmetric linear connection [1] vanish along a smooth path without self-intersections
[2,3]. It was observed first by Fermi [4] for the Christoffel symbols of a Riemannian
connection and later it was generalized for arbitrary symmetric linear connections [5,
section 25, pp 64-68]. It is natural for these results to be generalized to the case
of nonvanishing torsion. This is important in connection with the intensive use of
nonsymmetric linear connections [1, 2] in different physical theories [6, 7].

This paper, which is a continuation of [8] and a revised version of [9], investigates the
mentioned problem from the more general viewpoint of arbitrary derivations of the tensor
algebra over a differentiable manifold [1, 2]. In it we prove the existence of special bases
(or coordinates), calleciormal in which the components of the derivations, as defined
below, vanish along some path. In particular, our results are valid for linear connections.
The normal bases are explicitly considered and the question of when they are holonomic or
anholonomic [2] is investigated.

As was pointed out in our previous work [8], where the above problems were solved
in a neighbourhood and at a point, the theorem of existence of normal bases is the right
mathematical background for the consideration of the equivalence principle (cf [7, 6]). The
results of this paper outline the boundaries of validity of this principle along arbitrary paths
in any gravitational theory based on derivations.

The paper is organized as follows. Section 2 contains some preliminary mathematical
definitions and results. In section 3 we investigate problems concerning normal frames for
derivations along arbitrary vector fields. Sections 4 and 5 deal with the same problems but
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4328 B Z lliev

for derivations along paths and a fixed vector field, respectively. The results are specialized
for linear connections in section 6. The paper closes with section 7 in which connections
with the equivalence principle are made.

2. Mathematical preliminaries

For the explicit mathematical formulation of our problem, as well as for reference purposes,
in this section we recall some facts concerning derivations of the tensor algebra over a
manifold [8, 10, 1].

Let D be a derivation of the tensor algebra over a manifdglfiL]. By [1, proposition 3.3
of ch 1] there exists a unique vector fied and a unique tensor fielél of type (1, 1) such
that D = Ly + S. Here Ly is the Lie derivative alongX [1] and S is considered as a
derivation of the tensor algebra ovéf [1].

If S is a map from the set of! vector fields into the tensor fields of tyg#, 1) and
S : X — Sy, then the equatioan( = Ly + Sy defines a derivation of the tensor algebra
over M for any C* vector field X [1]. Such a derivation will be called asi-derivation
along X and denoted for brevity simply byx. An S-derivation is a mapD such that
D : X — Dy, where Dy is an S-derivation alongX.

Let{E;,i =1,...,n :=dim(M)} be a (coordinate or not [2,11]) local basis (frame)
of vector fields in the tangent bundle #d. It is holonomic (anholonomic) if the vectors
Es, ..., E, commute (do not commute) [2,11]. Using the explicit actionLgf and Sy on
tensor fields [1] one can easily deduce the explicit form of the local componerid Bf
for any C* tensor fieldT. In particular, thecomponents(Wx); of Dy are defined by

Dx(Ej) = (Wx)}E;. (2.1)
Here and below, all Latin indices, perhaps with some super- or subscripts, run from 1
to n := dim(M) and the usual summation rule on indices repeated on different levels is
assumed. It is easily seen tr(awx)_;i = (SX);'. —Ej(X)+ C,i_ij where X (f) denotes the
action of X = X*E, on theC? scalar functionf, asX (f) := X*E(f), and theC,ij define
the commutators of the basic vector fields # ,[E;] = CiEi.

The change{E;} — {E, = AL E;}, A = [A,] being a nondegenerate matrix
function, implies the transformation OGWX); into (see (2.1))(Wp)" = (A‘l);”A{
(Wx)j- + (A~H™X (AD). Introducing the matricedVy := [(Wx)j] and Wy = [(Wy)/']
and puttingX (A) := X*E;(A) = [X*E(A! )], we obtain

Wy = A"HWxA + X (A)). (2.2)

If V is a linear connection with local componer]it'ﬁ (see, e.g. [1,11]), theWx(E;) =

(F]’lkX")E,- [1]. Hence, we see from (2.1) th@ly is a covariant differentiation alony iff
(Wy)i =T, x* (2.3)

for some functiond™, .

Let D be anS-derivation andX andY be vector fields. Théorsion operator7? of D
is defined as

TP(X,Y) = DxY — DyX —[X, Y]. (2.4)
The S-derivation D is torsion freeif T2 = 0 (cf [1]).
For a linear connectiorv, due to (2.3), we haveTV(X,Y)) = T;X*Y' where

T}, = —(Ti, — Tj,) — C}, are the components of the torsion tenso’of1].
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Mathematically the task of this work is to investigate the problem of when along a given
pathy : J — M, J being a real interval, special framgs;} exist, callednormal in which
the componentd;, of an S-derivationD along some or all vector field§ vanish. In other
words, we are going to solve equation (2.2) with respecttander certain conditions,
which will be specified below. Physically the solution of this problem corresponds to the
investigation of the validity of the equivalence principle along paths.

3. Derivations along arbitrary vector fields

In this section we investigate the problem of existence and some properties of special bases
{E!} in which the components of a giveStderivation Dy along anarbitrary vector field
X vanish along a path : J — M, with J being anR-interval. Such bases or frames will
be callednormal alongy. Note that{E;} are supposed to be definéda neighbourhood
of y(J), while the components ab vanishon y (J).
The S-derivationD is linear along y if for all X in some (and hence in any) bas$is; },
we have (cf (2.3))

Wx(y(s)) = Ty () X (v (5)) (3.1)

for some matrix function$’; defined ony (J). This means that (2.3) is valid fare y (J),
but it may not be valid forx ¢ y(J). Evidently, a linear connection is a linear derivation
along any pathy.

Proposition 3.1.An S-derivation D is linear along a patly : J — M if and only if a
normal frame forD alongy exists, i.e. one in which the components Bf along every
vector field X vanish alongy (that is, ony (J)).

Proof. Let the derivationD be linear along/, i.e. (3.1) is valid. Let us first assume that
is without self-intersections and thatJ) is contained in only one coordinate neighbourhood
U in which some local coordinate bagig; = 9/9x'} is fixed.

Due to (2.2) we have to prove the existence of a madrix [Aj.] for which in the basis
{E} = A'E;} the equalityWy (y (s)) = O is fulfilled for everyX = X*E;. Substituting (3.1)
into (2.2), we see that the last equation is equivalent to

Ti(y () Ay (s)) + Ex(A) |,5=0 Ep = d/0x". (3.2)

The general solution of this equation can be constructed as follows.

LetV :=J x --- x J, whereJ is takenn — 1 times. Let us fix a one-to-on€* map
n:J xV — M such thaty(-, ty) = y for some fixedty € V, i.e. n(s, to) = y(s), s € J.
This is possible iffy is without self-intersections. 1& (5 (J, V) we introduce coordinates
{x'} by putting(x1(n(s, t)), ..., x"(n(s, t))) = (s, t),s € J, t € V. This, again, is possible
iff y is without self-intersections.

If we expandA (5 (s, t)) into a power series with respect tb— tp), we find the general
solution of (3.2) in the form

A(n(s, 1) = { 1= Ty ) i, 1) — x* (s, to))]}ns, s0; =T'1 0 ¥) B(so, to; 1)

k=2
+Bi (s, t; DX (s, ) — XX (s, to)I[X (s, 1) — X' (s, to))]. (3.3)

Here: 1 is the unit matrixsg € J is fixed, B is any nondegenerate matrix function of its
arguments, the matrix functior,; are such that they and their first derivatives are bounded
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whent — to, andY = Y (s, so; Z), with Z being a continuous matrix function ef which
is the unique solution of the matrix initial-value problem [12, ch IV, section 1]
dy
ds
Hence, a matrix4, and, consequently, a bagig!} with the needed property exist.

If y(J) does not lie in only one coordinate neighbourhood, then, by means of the above-
described method, we can obtain local normal frames in different coordinate neighbourhoods
which form a neighbourhood af(J). From these local normal bases we can construct a
global normal basis along. Generally this frame will not be continuous in the regions
of intersection of two or more coordinate neighbourhoods. For example, suppose for some
y there does not exist one coordinate neighbourhood containidg but there are two
coordinate neighbourhoodd’ and U” such thaty(J) ¢ U'|JU”. Then inU’ andU”
there are (see above) normal bagg§ and{E;} alongy for Dx for everyX. So, a global
normal basis{E®} in U’'|JU"” can be obtained by putting?|, = E/|, for x € U’ and
E?|, = E}|, for x e U"\U’ (note thatU” (U’ is not empty ag is aC?! path).

Analogously, ify has self-intersections, then on any ‘partjofvithout self-intersections
local normal frames exist. From these frames a global normal one can be constructed along
y. (At the points of self-intersections ¢f we can arbitrary fix these bases to be the ones
obtained above for some fixed part pfwithout self-intersections.)

Consequently, ifD is linear alongy, then in a neighbourhood af(J) a basis{E;}
which is normal along’ exists for Dy for every vector fieldX.

Conversely, let us assume the existence of a fr&j¢ which is normal along, i.e.

Wy = 0 for every X. Fixing some basi§E;} such thatE; = A;Ei, from (2.2) we find
(WxA 4+ X (A))l, ) = 0. ConsequentiWx (y(s)) = —[(X(A))A*1]|y(3) which means that
equation (3.1) holds foF(y (s)) = —[(Ek(A))A‘1]|),(S). O

zZY Ylpey = 1 Y = Y(s, 50; Z). (3.4)

Proposition 3.2.All frames which are normal along a pathfor an S-derivation, if any,
are connected along by linear transformations whose coefficients are such that the action
of the vectors from these bases on them vanish ajorfige. ony (J)).

Proof. If {E;} and{E]} are normal frames, then we haW&, (y (s)) = Wx(y(s)) = 0. So,
from (2.2) follows X (A)|, s, = O for every vector fieldX = X*Ey, i.e. Ex(A)|,) = 0. O

Proposition 3.3.If along a pathy : J — M there is a locaholonomic(on y (J)) normal
frame for someS-derivation D, then D is torsion free ory (J). Conversely, ifD is torsion
free ony (J) and a smooth@?) normal frame forD alongy exists, then all frames which
are normal forD are holonomic along .

Remark In the second part of this proposition we demand that the frames are smooth.
This is necessary as any holonomic basis is such. Besides, as we saw in the proof of
proposition 3.1, ify(J) is not contained in only one coordinate neighbourhood op if

has self-intersection, then, generally, alopgthere does not exist a continuous, even
anholonomic, basis with the necessary property. But on any piece wfthout self-
intersection which lies in only one coordinate neighbourhood a continuous, but maybe
anholonomic, normal basis exists.

Proof. If {E]} is a normal basis, i.8V (y (s)) = O for everyX ands € J, then, using (2.4),
we find TP (E/, E})|ym = —[E], E}]|y(s). ConsequentIy{E{} is holonomic aty (s), i.e.
[El, Ellly» = 0, iff 0 = TP(X, V)lyy = X"(y()Y" (y () (TP(E], EDlys) (see
proposition 3.1 and (3.1)) for all vector fieldsandY, which is equivalent td |, ;) = 0.
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Conversely, letr' |, = 0. We have to prove that any bagig/} alongy in which
Wi (y(s)) = 0 is holonomic aty(s), s € J. The holonomicity aty(s) means 0=
[E], Eilly) = ((AD(E[(A}) — E[(A}))E[}, (). But (see proposition 3.1) the existence
of {E[} is equivalent toWx (y (s)) = (Fka)|y(S) for every X. These two facts, combined
with (2.4), show that(T'x)il,«) = (T))ily - Using this and(l'eA + A /9x%)], ) = O
(see the proof of proposition 3.1), we fingf (A}, ) = —AL AT (T} 1) = E{(ADIys)-
Therefore E}, E7]|, ) = O (see above), i.€E]} is a holonomic normal frame op(J). O

It can be proved (see lemma 4.1 below) that for any path/ — M every frame
{E}} defined only ony(J) can locally be extended to hx)lonomicframe{Ef} defined in
a neighbourhood ofy (J) and such that”|,,, = E!. In particular, this is true for the
restriction’El = E!|,;, of the normal base$E;} considered above. But in the general
case, the extended holonomic bag&%} will not have the special property thég!} has.

4. Derivations along paths

Lety : J — M, J being anR-interval, be aC* path andX be aC? vector field defined in

a neighbourhood of (J) in such a way that o (J) it reduces to the tangent vector field
v, i.e. X, = y(s), s € J. We call the restriction ory(J) of an S-derivation Dy along

X (S-)derivation alongy and denote it byD”. Of course,D” generally depends on the
values ofX outsidey (J), but, as this dependence is insignificant for the following, it will
not be written explicitly. So, iff" is aC* tensor field in a neighbourhood ¢f(.J), then

(D'T)(y(s)) =D/T = (DxD)ly Xy =7 (). (4.1)

It is easily seen thab) T depends only on the values &1, for x € y(J), but not on the
ones forx & y(J). The operatoD?” is a generalization of the usual covariant differentiation
along curves (see [2, 3, 7] or section 6).

When restricted tg/(J), the components oDy will be called components db”.

Proposition 4.1.Along any C! pathy : J — M there exists a basi§E’} in which the
components of a gives-derivationD” alongy vanish ony (J).

Proof. Let us fix a basis{E;} in a neighbourhood of/(J). We have to prove the
existence of a transformatiof;} — {E]f = ALE:} such thatWg|,,, = 0. By (2.2
this is equivalent to the existence of a matrix functian= [A’] satisfying alongy the
equation(A~X(WxA + X (A)|, ) =0,s € J, or

. dA(y (s)

Y (Alys = % =—Wx(r(s)A(y(s) (4.2)
asX|,) = y(s). The general solution of this equation with respecitds

A(s;y) =Y (s, 50, —Wx o y)B(y) (4.3)

whereY is the unique solution of the initial-value problem (3.4),€ J is fixed, andB(y)
is a nondegenerate matrix function pf
Let A be any matrix function with the propertf(x)|.=¢ ) = A(s;y) for some
so and B. (For example, using the notation of the proof of proposition 3.1, in any
coordinate neighbourhood in whighis without self-intersections, we can patn(s, t)) =
Y (s, so; —Wyx o y)B(so, to, t; ) for a fixed nondegenerate matrix functigh) Then it is
easily seen thatt carries out the transformation needed. Hence, the §a$is= A;Ei} is
the one being looked for.
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Proposition 4.2.The normal frames alongg : J — M for D? are connected by linear
transformations whose coefficients giiJ) are constant or may depend only gn

Proof. If {E;} and{E} are normal bases, thé#ix (y (s)) = Wi (y(s)) = 0, Xl = 7 (s).
So, from (2.2) it followsy (A)[, ;) = dA(y(s))/ds = 0, i.e. A(y (s)) is a constant or depends
only on the mapy. |

From propositions 4.1 and 4.2 we infer that the requirement for the componet®$ of
to vanish along a path determines the corresponding normal bases with some arbitrariness
only ony (J) and leaves them absolutely arbitrary outside theygdt. For this reason we
speak about normal bases B defined onlyon y (J).

Proposition 4.3.Let the basig{E;} defined ony (J) be normal for someS-derivation D”
along ac! pathy : J — M. Let U be a coordinate neighbourhood such that in
UN(y)) # @ the pathy is without self-intersections. Then there is a neighbourhood
of UMN(y(J)) in U in which {E/} can be extended to a coordinate basis, i.e. in this
neighbourhood local coordinatgs'} exist such that!|, ) = 9/0y"|, (-

Remark 1.This proposition means that locally any normal basis #6r on y(J) can be
thought of as (extended to) a coordinate, and hence a holonomic one (see proposition 4.2).
In particular, if y is contained in only one coordinate neighbourhood and is without self-
intersections, then every normal framep(/) for D can be extended to a holonomic one
(see the proof of proposition 4.2).

Remark 2.This result is independent of the torsion of the derivati®nvhich inducesD” .
The cause for this is the conditidXi|, ) = y(s) in (4.1).

Proof. The proposition is a trivial corollary from the proof of proposition 4.1 and the
following lemma. |

Lemma 4.1l et the pathy : / — M be without self-intersections and such that/) is
contained in some coordinate neighbourh@bd.e. y(J) C U. Let{E!} be a smooth basis
defined ony(J), i.e. E}|, ) depends smoothly on. Then there is a neighbourhood of
y(J) in U in which coordinateqy’} exist such that!|, = 9/3y'|,, i.e. {E/} can be
extended in it to a coordinate basis.

Proof of lemma 4.1 Letn : J xV — U,V :=J x---x J (n— 1 times), be ac!
one-to-one map such that:, ty) = y for some fixedtg € V, i.e.n(s, to) = y(s), s € J (cf
the proof of proposition 3.1). In the neighbourhopd, V) C U we introduce coordinates
{x"} by putting (x*(n(s, t)), ..., x"(n(s, t))) = (s, t), s € J, t € V. Let the nondegenerate
matrix [A;. (s; y)] define the expansion df£/} with respect to{d/dx'}, i.e.

) . (4.4)
y(s)
Define the functions’ : n(J, V) — R by

ax/

’ J 0
Ejly(x) = Aj (S; V) .

Y(n(s. 1)) = 8 xj+ / (ADi@s ) du 4+ (A (s I (n (s, 8) — 27 (v ()]

st ) (s, 1) — X (r ()] (s, 8) — xF (v (9))] (4.5)
wheresg € J andxg € n(J, V) are fixed and the function j"k together with their first
derivatives are bounded wheén— to. Then, because of(-, to) = y, we find

ay' 3y

9x/ j

y(s)

= (A p). (4.6)

0% |15 t0)
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As detLAj. (s; ¥)] # 0, 0o, from (4.6) it follows that the transformatiofx’} — {y'} is
a diffeomorphism on some neighbourhoodyaf/) lying in U. So, in this neighbourhood
{y'} are local coordinates. The coordinate basic vectorg @h) corresponding to them are
(see (4.6) and (4.4))

9 dx! 3 AiGs: y) 3 £
b = - —_— = (S, )/ —_— = ily(s)-
Wl AW e/ xle 7 il 7
Hence{y'} are the local coordinates we are looking for. O

Lemma 4.1 also has a separate meaning: according to it any locally smooth basis
definedon y (J) can locally be extended totelonomicbasisin a neighbourhood ofy (/).
Evidently, such an extension can also be done in an anholonomic way. Consequently, the
holonomicity problem for a basis defined only ¢1iJ) depends on the way this basis is
extended in a neighbourhood ofJ).

5. Derivations along a fixed vector field

Results, analogous to those of section 3, are true alsd-fitgrivationsDy along afixed
vector field X (see section 2), in other words for a fixed derivation. This case is briefly
considered below.

Proposition 5.1.The S-derivation Dy along a fixed vector field( is linear along a path
vy :J — M, i.e. (3.1) holds for that fixed, iff along y a normal framgE’} for Dy exists,
i.e. one in which the components 8fy vanish ony (J).

Proof. If (3.1) is valid for the givenX, then by the proof of proposition 3.1, equation (3.2)
has solutionsi given by (3.3). Consequently in the bagis = A_;ZE,-} we haveWy (y (s)) =
[AY(Wx A + X(A)]ly) = [(ATXD)], [Tk A + Ex(A)), ] = 0. Conversely, if in
{E} = AJE;} we haveW (y(s)) = O, then due to (2.2)WxA + X (A))l,() = 0 is valid,
i.e. Wx(y(s) = Ti(y ()X (y (s)) for Tk(y (s)) = —[(Ex(A) A1, ) for the fixed vector
field X. O

Evidently, infinitely manyT',’s can be found for which (3.1) holds for a fixek.
Consequently, foDy with a fixed X normal frames along any pagh always exist. These
frames will be explicitly constructed elsewhere for any subsevof

Proposition 5.2.The normal bases along for Dy for a fixed X are connected by linear
transformations whose matrices are such that the actiof ofi them vanishes op(J).

Proof. Ifin {E;} and{E] = ALE;} we haveWy(y (s)) = Wi (y(s)) = 0. then due to (2.2)
X(A)ly ) = 0 is valid with A := [A;l], i.e. X(A)ly ) =0. O

For a fixed vector fieldX the analogue of proposition 3.3 is, generally, not true. But if
for Dy, X being fixed, (4.1) is valid ow (J), then we can construct a classSflerivations
{'D} whose components for every are given by (3.1). Evidently, for these derivations
proposition 3.3 holds. Thus we have proved it.

Proposition 5.3.1f along y for Dy with a fixedX (3.1) is valid and there is a local holonomic
(on y(J)) normal frame alongy for Dy, then the above-described derivatiofi®} are
torsion free ony(J). Conversely, ifD} are torsion free ory (J) and there exists a smooth
normal frame forDy, then between them exist holonomic ones, but generally not all of
them are such.
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6. The case of linear connections

In this section we apply the preceding results about normal frames to the special case of a
linear connectionV.

Corollary 6.1. For any linear connectioW there exists along every path: / — M a field
of bases in which the components ¥fvanish ony(J). These bases are connected with
one another in the way described in proposition 3.2.

Proof. This result is a consequence from (2.3), propositions 3.1 and 3.2 and their proofs;
in the former of the proofs a basis with the necessary property is explicitly constriigted.

Corollary 6.2. One, and hence any, basis for a linear connectiowhich is smooth on
y(J) and normal along a patp : J — M, is holonomic if and only ifV is torsion free on

y(J).

Remark If y is without self-intersections and/(J) lies in only one coordinate
neighbourhood, then holonomic normal bases exist (coordinatesy fon y(J) if V is
torsion freeand vice versa, which is a well known fact [1-3, 11].

Proof. The statement follows from (2.3) and propositions 3.1 and 3.3. O

Corollary 6.3.Let V be a torsion-free linear connection and the path / — M be
without self-intersections and lying in only one coordinate neighbourhood. TheW for
normal coordinates exist op(J), or, equivalently, locally holonomic normal bases.

Remark This corollary reproduces a classical theorem that can be found, for instance, in
[3] orin [2, ch Ill, section 8], in the latter references to original papers are given.

Proof. The result follows from corollaries 6.1 and 6.2. O

Corollary 6.4. Let |, := V, be the covariant derivative associated withalong theC*
pathy : J — M. Then ony(J) normal frames foiv,, exist. They are obtained from one
another by linear transformations whose coefficients are constant or depend gnlylbn

y is without self-intersections ang(J) lies in only one coordinate neighbourhood, then in
some neighbourhood gf(J) all of these normal frames can be extended in a holonomic
way.

Proof. The statement follows from propositions 4.1-4.3. O

7. Conclusion

The above investigation shows that under sufficiently general conditions there exist,
generally anholonomic, bases in which the components of a derivation of the tensor algebra
over a differentiable manifold/ vanish along a patlkr : / — M. These bases (frames)

are callednormal When the derivations are along paths, then the corresponding normal
bases can always be taken as holonomic (or coordinate) ones. These results generalize a
series of analogous ones concerning linear connections and originating from [4].

A feature of the case along paths considered here is its independence of the derivation’s
curvature, which was not even introduced here. The cause for this is the one dimensionality
of the paths (curves) considered as submanifoldaZofin this connection it is interesting
to consider the analogous problems on arbitrary submanifold® ,ofvhich will be done
elsewhere.

Now we shall briefly consider the relation of the results obtained in this paper with
the equivalence principle [7,6]. According to it, the gravitational field strength, usually
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identified with the components of some linear connection, is transformable to zero at a
point by an appropriate choice of the local (called normal, geodesic, Riemannian, inertial,
or Lorentz) coordinates or reference frame (basis). So, from a mathematical point of view,
the equivalence principle states the existence of local bases in which the corresponding
connection’s components vanish at a point. The results of this investigation show the
strict validity of this statement along any path (curve). Hence, we can make the following
three conclusions: (i) any gravitational theory based on space-time with a linear connection
is compatible with the equivalence principle along every path, i.e. in it (local) inertial
frames along paths exist. These frames are generally anholonomic, but under some (not
very restrictive from a physical point of view) conditions on the paths (see lemma 4.1) such
holonomic frames of reference exist. (ii) In gravitational theories based on linear connections
the equivalence principle along paths must not be considered as a principle (in a sense of
an axiom) as it is identically fulfilled because of their mathematical background. (iii) If we
want the equivalence principle along paths to be valid in gravitational theories based on
some (class of) tensor derivations (cf [10, section V]), then this principle will select only the
theories based on linear connections, i.e. only those in which it is identically satisfied. In
fact, suppose the gravitational field strength to be locally identified with the components of
a certain tensor derivation. The equivalence principle along paths requires the gravitational
field strength along paths to vanish. So, this leads to the possibility of transforming the
components of the tensor derivation to zero alang path. By proposition 3.1 this implies

the derivation to be linear along every path which is possible iff it is linear at every point,
i.e. iff it is a linear connection.
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