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Abstract. We investigate the validity of the equivalence principle along paths in gravitational
theories based on derivations of the tensor algebra over a differentiable manifold. We prove
the existence of local bases, called normal, in which the components of the derivations vanish
along arbitrary paths. All such bases are explicitly described. The holonomicity of the normal
bases is considered. The results obtained are applied to the important case of linear connections
and their relationship with the equivalence principle is described. In particular, any gravitational
theory based on tensor derivations which obeys the equivalence principle along all paths, must
be based on a linear connection.

1. Introduction

A well known classical result is the existence of local coordinates in which the components
of a symmetric linear connection [1] vanish along a smooth path without self-intersections
[2, 3]. It was observed first by Fermi [4] for the Christoffel symbols of a Riemannian
connection and later it was generalized for arbitrary symmetric linear connections [5,
section 25, pp 64–68]. It is natural for these results to be generalized to the case
of nonvanishing torsion. This is important in connection with the intensive use of
nonsymmetric linear connections [1, 2] in different physical theories [6, 7].

This paper, which is a continuation of [8] and a revised version of [9], investigates the
mentioned problem from the more general viewpoint of arbitrary derivations of the tensor
algebra over a differentiable manifold [1, 2]. In it we prove the existence of special bases
(or coordinates), callednormal, in which the components of the derivations, as defined
below, vanish along some path. In particular, our results are valid for linear connections.
The normal bases are explicitly considered and the question of when they are holonomic or
anholonomic [2] is investigated.

As was pointed out in our previous work [8], where the above problems were solved
in a neighbourhood and at a point, the theorem of existence of normal bases is the right
mathematical background for the consideration of the equivalence principle (cf [7, 6]). The
results of this paper outline the boundaries of validity of this principle along arbitrary paths
in any gravitational theory based on derivations.

The paper is organized as follows. Section 2 contains some preliminary mathematical
definitions and results. In section 3 we investigate problems concerning normal frames for
derivations along arbitrary vector fields. Sections 4 and 5 deal with the same problems but
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for derivations along paths and a fixed vector field, respectively. The results are specialized
for linear connections in section 6. The paper closes with section 7 in which connections
with the equivalence principle are made.

2. Mathematical preliminaries

For the explicit mathematical formulation of our problem, as well as for reference purposes,
in this section we recall some facts concerning derivations of the tensor algebra over a
manifold [8, 10, 1].

LetD be a derivation of the tensor algebra over a manifoldM [1]. By [1, proposition 3.3
of ch I] there exists a unique vector fieldX and a unique tensor fieldS of type (1, 1) such
that D = LX + S. HereLX is the Lie derivative alongX [1] and S is considered as a
derivation of the tensor algebra overM [1].

If S is a map from the set ofC1 vector fields into the tensor fields of type(1, 1) and
S : X 7→ SX, then the equationDS

X = LX + SX defines a derivation of the tensor algebra
over M for any C1 vector fieldX [1]. Such a derivation will be called anS-derivation
alongX and denoted for brevity simply byDX. An S-derivation is a mapD such that
D : X 7→ DX, whereDX is anS-derivation alongX.

Let {Ei, i = 1, . . . , n := dim(M)} be a (coordinate or not [2, 11]) local basis (frame)
of vector fields in the tangent bundle toM. It is holonomic (anholonomic) if the vectors
E1, . . . , En commute (do not commute) [2, 11]. Using the explicit action ofLX andSX on
tensor fields [1] one can easily deduce the explicit form of the local components ofDXT

for anyC1 tensor fieldT . In particular, thecomponents(WX)
i
j of DX are defined by

DX(Ej ) = (WX)
i
jEi. (2.1)

Here and below, all Latin indices, perhaps with some super- or subscripts, run from 1
to n := dim(M) and the usual summation rule on indices repeated on different levels is
assumed. It is easily seen that(WX)

i
j := (SX)ij −Ej(Xi)+CikjXk whereX(f ) denotes the

action ofX = XkEk on theC1 scalar functionf , asX(f ) := XkEk(f ), and theCikj define
the commutators of the basic vector fields by [Ej ,Ek] = CijkEi .

The change{Ei} 7→ {E′m := AimEi}, A := [Aim] being a nondegenerate matrix
function, implies the transformation of(WX)

i
j into (see (2.1))(W ′X)

m
l = (A−1)mi A

j

l

(WX)
i
j + (A−1)mi X(A

i
l ). Introducing the matricesWX := [(WX)

i
j ] and W ′X := [(W ′X)

m
l ]

and puttingX(A) := XkEk(A) = [XkEk(Aim)], we obtain

W ′X = A−1{WXA+X(A)}. (2.2)

If ∇ is a linear connection with local components0ijk (see, e.g. [1, 11]), then∇X(Ej ) =
(0ijkX

k)Ei [1]. Hence, we see from (2.1) thatDX is a covariant differentiation alongX iff

(WX)
i
j = 0ijkXk (2.3)

for some functions0ijk.
Let D be anS-derivation andX andY be vector fields. Thetorsion operatorT D of D

is defined as

T D(X, Y ) := DXY −DYX − [X, Y ]. (2.4)

The S-derivationD is torsion freeif T D = 0 (cf [1]).
For a linear connection∇, due to (2.3), we have(T ∇(X, Y ))i = T iklX

kY l where
T ikl := −(0ikl − 0ilk)− Cikl are the components of the torsion tensor of∇ [1].
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Mathematically the task of this work is to investigate the problem of when along a given
pathγ : J → M,J being a real interval, special frames{E′i} exist, callednormal, in which
the componentsW ′X of anS-derivationD along some or all vector fieldsX vanish. In other
words, we are going to solve equation (2.2) with respect toA under certain conditions,
which will be specified below. Physically the solution of this problem corresponds to the
investigation of the validity of the equivalence principle along paths.

3. Derivations along arbitrary vector fields

In this section we investigate the problem of existence and some properties of special bases
{E′i} in which the components of a givenS-derivationDX along anarbitrary vector field
X vanish along a pathγ : J → M, with J being anR-interval. Such bases or frames will
be callednormal alongγ . Note that{E′i} are supposed to be definedin a neighbourhood
of γ (J ), while the components ofD vanishon γ (J ).

TheS-derivationD is linear alongγ if for all X in some (and hence in any) basis{Ei},
we have (cf (2.3))

WX(γ (s)) = 0k(γ (s))Xk(γ (s)) (3.1)

for some matrix functions0k defined onγ (J ). This means that (2.3) is valid forx ∈ γ (J ),
but it may not be valid forx 6∈ γ (J ). Evidently, a linear connection is a linear derivation
along any pathγ .

Proposition 3.1.An S-derivationD is linear along a pathγ : J → M if and only if a
normal frame forD alongγ exists, i.e. one in which the components ofDX along every
vector fieldX vanish alongγ (that is, onγ (J )).

Proof. Let the derivationD be linear alongγ , i.e. (3.1) is valid. Let us first assume thatγ
is without self-intersections and thatγ (J ) is contained in only one coordinate neighbourhood
U in which some local coordinate basis{Ei = ∂/∂xi} is fixed.

Due to (2.2) we have to prove the existence of a matrixA = [Aij ] for which in the basis
{E′j = AijEi} the equalityW ′X(γ (s)) = 0 is fulfilled for everyX = XkEk. Substituting (3.1)
into (2.2), we see that the last equation is equivalent to

0k(γ (s))A(γ (s))+ Ek(A) |γ (s)= 0 Ek = ∂/∂xk. (3.2)

The general solution of this equation can be constructed as follows.
Let V := J × · · · × J , whereJ is takenn− 1 times. Let us fix a one-to-oneC1 map

η : J × V → M such thatη(·, t0) = γ for some fixedt0 ∈ V , i.e. η(s, t0) = γ (s), s ∈ J .
This is possible iffγ is without self-intersections. InU

⋂
η(J, V ) we introduce coordinates

{xi} by putting(x1(η(s, t)), . . . , xn(η(s, t))) = (s, t), s ∈ J , t ∈ V . This, again, is possible
iff γ is without self-intersections.

If we expandA(η(s, t)) into a power series with respect to(t− t0), we find the general
solution of (3.2) in the form

A(η(s, t)) =
{

1I−
n∑
k=2

0k(γ (s))[x
k(η(s, t))− xk(η(s, t0))]

}
Y (s, s0;−01 ◦ γ )B(s0, t0; η)

+Bkl(s, t; η)[xk(η(s, t))− xk(η(s, t0))][x
l(η(s, t))− xl(η(s, t0))]. (3.3)

Here: 1I is the unit matrix,s0 ∈ J is fixed,B is any nondegenerate matrix function of its
arguments, the matrix functionsBkl are such that they and their first derivatives are bounded



4330 B Z Iliev

whent→ t0, andY = Y (s, s0;Z), with Z being a continuous matrix function ofs, which
is the unique solution of the matrix initial-value problem [12, ch IV, section 1]

dY

ds
= ZY Y |s=s0 = 1I Y = Y (s, s0;Z). (3.4)

Hence, a matrixA, and, consequently, a basis{E′i} with the needed property exist.
If γ (J ) does not lie in only one coordinate neighbourhood, then, by means of the above-

described method, we can obtain local normal frames in different coordinate neighbourhoods
which form a neighbourhood ofγ (J ). From these local normal bases we can construct a
global normal basis alongγ . Generally this frame will not be continuous in the regions
of intersection of two or more coordinate neighbourhoods. For example, suppose for some
γ there does not exist one coordinate neighbourhood containingγ (J ) but there are two
coordinate neighbourhoodsU ′ andU ′′ such thatγ (J ) ⊂ U ′

⋃
U ′′. Then inU ′ andU ′′

there are (see above) normal bases{E′i} and{E′′i } alongγ for DX for everyX. So, a global
normal basis{E0

i } in U ′
⋃
U ′′ can be obtained by puttingE0

i |x = E′i |x for x ∈ U ′ and
E0
i |x = E′′i |x for x ∈ U ′′\U ′ (note thatU ′′

⋂
U ′ is not empty asγ is aC1 path).

Analogously, ifγ has self-intersections, then on any ‘part’ ofγ without self-intersections
local normal frames exist. From these frames a global normal one can be constructed along
γ . (At the points of self-intersections ofγ we can arbitrary fix these bases to be the ones
obtained above for some fixed part ofγ without self-intersections.)

Consequently, ifD is linear alongγ , then in a neighbourhood ofγ (J ) a basis{E′i}
which is normal alongγ exists forDX for every vector fieldX.

Conversely, let us assume the existence of a frame{E′i} which is normal alongγ , i.e.
W ′X = 0 for everyX. Fixing some basis{Ei} such thatE′j = AijEi , from (2.2) we find
(WXA+X(A))|γ (s) = 0. ConsequentlyWX(γ (s)) = −[(X(A))A−1]|γ (s) which means that
equation (3.1) holds for0k(γ (s)) = −[(Ek(A))A−1]|γ (s). �

Proposition 3.2.All frames which are normal along a pathγ for an S-derivation, if any,
are connected alongγ by linear transformations whose coefficients are such that the action
of the vectors from these bases on them vanish alongγ (i.e. onγ (J )).

Proof. If {Ei} and{E′i} are normal frames, then we haveW ′X(γ (s)) = WX(γ (s)) = 0. So,
from (2.2) followsX(A)|γ (s) = 0 for every vector fieldX = XkEk, i.e.Ek(A)|γ (s) = 0. �

Proposition 3.3.If along a pathγ : J → M there is a localholonomic(on γ (J )) normal
frame for someS-derivationD, thenD is torsion free onγ (J ). Conversely, ifD is torsion
free onγ (J ) and a smooth (C1) normal frame forD alongγ exists, then all frames which
are normal forD are holonomic alongγ .

Remark. In the second part of this proposition we demand that the frames are smooth.
This is necessary as any holonomic basis is such. Besides, as we saw in the proof of
proposition 3.1, ifγ (J ) is not contained in only one coordinate neighbourhood or ifγ

has self-intersection, then, generally, alongγ there does not exist a continuous, even
anholonomic, basis with the necessary property. But on any piece ofγ without self-
intersection which lies in only one coordinate neighbourhood a continuous, but maybe
anholonomic, normal basis exists.

Proof. If {E′i} is a normal basis, i.e.W ′X(γ (s)) = 0 for everyX ands ∈ J , then, using (2.4),
we find T D(E′i , E

′
j )|γ (s) = −[E′i , E

′
j ]|γ (s). Consequently{E′i} is holonomic atγ (s), i.e.

[E′i , E
′
j ]|γ (s) = 0, iff 0 = T D(X, Y )|γ (s) = X′i (γ (s))Y ′j (γ (s))(T D(E′i , E

′
j )|γ (s)) (see

proposition 3.1 and (3.1)) for all vector fieldsX andY , which is equivalent toT D|γ (J ) = 0.
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Conversely, letT D|γ (J ) = 0. We have to prove that any basis{E′i} alongγ in which
W ′X(γ (s)) = 0 is holonomic atγ (s), s ∈ J . The holonomicity atγ (s) means 0=
[E′i , E

′
j ]|γ (s) = {(A−1)lk(E

′
i (A

k
j ) − E′j (Aki ))E′l}|γ (s). But (see proposition 3.1) the existence

of {E′i} is equivalent toWX(γ (s)) = (0kXk)|γ (s) for everyX. These two facts, combined
with (2.4), show that(0k)ij |γ (s) = (0j )

i
k|γ (s). Using this and(0kA + ∂A/∂xk)|γ (s) = 0

(see the proof of proposition 3.1), we findE′j (A
k
i )|γ (s) = −AljAmi (0l)km|γ (s) = E′i (Akj )|γ (s).

Therefore [E′i , E
′
j ]|γ (s) = 0 (see above), i.e.{E′i} is a holonomic normal frame onγ (J ). �

It can be proved (see lemma 4.1 below) that for any pathγ : J → M every frame
{Eγi } defined only onγ (J ) can locally be extended to aholonomicframe {Ehi } defined in
a neighbourhood ofγ (J ) and such thatEhi |γ (J ) = E

γ

i . In particular, this is true for the
restriction ′Eγi = E′i |γ (J ) of the normal bases{E′i} considered above. But in the general
case, the extended holonomic bases{′Ehi } will not have the special property that{E′i} has.

4. Derivations along paths

Let γ : J → M,J being anR-interval, be aC1 path andX be aC1 vector field defined in
a neighbourhood ofγ (J ) in such a way that onγ (J ) it reduces to the tangent vector field
γ̇ , i.e.X|γ (s) = γ̇ (s), s ∈ J . We call the restriction onγ (J ) of an S-derivationDX along
X (S-)derivation alongγ and denote it byDγ . Of course,Dγ generally depends on the
values ofX outsideγ (J ), but, as this dependence is insignificant for the following, it will
not be written explicitly. So, ifT is aC1 tensor field in a neighbourhood ofγ (J ), then

(Dγ T )(γ (s)) := Dγs T := (DXT )|γ (s) X|γ (s) = γ̇ (s). (4.1)

It is easily seen thatDγs T depends only on the values ofT |x for x ∈ γ (J ), but not on the
ones forx 6∈ γ (J ). The operatorDγ is a generalization of the usual covariant differentiation
along curves (see [2, 3, 7] or section 6).

When restricted toγ (J ), the components ofDX will be called components ofDγ .

Proposition 4.1.Along anyC1 path γ : J → M there exists a basis{E′i} in which the
components of a givenS-derivationDγ alongγ vanish onγ (J ).

Proof. Let us fix a basis{Ei} in a neighbourhood ofγ (J ). We have to prove the
existence of a transformation{Ei} → {E′j = AijEi} such thatW ′X|γ (J ) = 0. By (2.2)
this is equivalent to the existence of a matrix functionA = [Aij ] satisfying alongγ the
equation(A−1(WXA+X(A)))|γ (J ) = 0, s ∈ J , or

γ̇ (A)|γ (s) ≡ dA(γ (s))

ds
= −WX(γ (s))A(γ (s)) (4.2)

asX|γ (s) = γ̇ (s). The general solution of this equation with respect toA is

A(s; γ ) = Y (s, s0;−WX ◦ γ )B(γ ) (4.3)

whereY is the unique solution of the initial-value problem (3.4),s0 ∈ J is fixed, andB(γ )
is a nondegenerate matrix function ofγ .

Let A be any matrix function with the propertyA(x)|x=(γ (s)) = A(s; γ ) for some
s0 and B. (For example, using the notation of the proof of proposition 3.1, in any
coordinate neighbourhood in whichγ is without self-intersections, we can putA(η(s, t)) =
Y (s, s0;−WX ◦ γ )B(s0, t0, t; γ ) for a fixed nondegenerate matrix functionB.) Then it is
easily seen thatA carries out the transformation needed. Hence, the basis{E′j = AijEi} is
the one being looked for. �
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Proposition 4.2.The normal frames alongγ : J → M for Dγ are connected by linear
transformations whose coefficients onγ (J ) are constant or may depend only onγ .

Proof. If {Ei} and{E′i} are normal bases, thenWX(γ (s)) = W ′X(γ (s)) = 0,X|γ (s) = γ̇ (s).
So, from (2.2) it followsγ̇ (A)|γ (s) = dA(γ (s))/ds = 0, i.e.A(γ (s)) is a constant or depends
only on the mapγ . �

From propositions 4.1 and 4.2 we infer that the requirement for the components ofDγ
to vanish along a pathγ determines the corresponding normal bases with some arbitrariness
only onγ (J ) and leaves them absolutely arbitrary outside the setγ (J ). For this reason we
speak about normal bases forDγ defined onlyon γ (J ).

Proposition 4.3.Let the basis{E′i} defined onγ (J ) be normal for someS-derivationDγ
along aC1 path γ : J → M. Let U be a coordinate neighbourhood such that in
U
⋂
(γ (J )) 6= ∅ the pathγ is without self-intersections. Then there is a neighbourhood

of U
⋂
(γ (J )) in U in which {E′i} can be extended to a coordinate basis, i.e. in this

neighbourhood local coordinates{yi} exist such thatE′i |γ (s) = ∂/∂yi |γ (s).
Remark 1.This proposition means that locally any normal basis forDγ on γ (J ) can be
thought of as (extended to) a coordinate, and hence a holonomic one (see proposition 4.2).
In particular, if γ is contained in only one coordinate neighbourhood and is without self-
intersections, then every normal frame onγ (J ) for Dγ can be extended to a holonomic one
(see the proof of proposition 4.2).

Remark 2.This result is independent of the torsion of the derivationD which inducesDγ .
The cause for this is the conditionX|γ (s) = γ̇ (s) in (4.1).

Proof. The proposition is a trivial corollary from the proof of proposition 4.1 and the
following lemma. �
Lemma 4.1.Let the pathγ : J → M be without self-intersections and such thatγ (J ) is
contained in some coordinate neighbourhoodU , i.e. γ (J ) ⊂ U . Let {E′i} be a smooth basis
defined onγ (J ), i.e. E′i |γ (s) depends smoothly ons. Then there is a neighbourhood of
γ (J ) in U in which coordinates{yi} exist such thatE′i |γ (s) = ∂/∂yi |γ (s), i.e. {E′i} can be
extended in it to a coordinate basis.

Proof of lemma 4.1. Let η : J × V → U , V := J × · · · × J (n − 1 times), be aC1

one-to-one map such thatη(·, t0) = γ for some fixedt0 ∈ V , i.e.η(s, t0) = γ (s), s ∈ J (cf
the proof of proposition 3.1). In the neighbourhoodη(J, V ) ⊂ U we introduce coordinates
{xi} by putting(x1(η(s, t)), . . . , xn(η(s, t))) = (s, t), s ∈ J , t ∈ V . Let the nondegenerate
matrix [Aij (s; γ )] define the expansion of{E′i} with respect to{∂/∂xi}, i.e.

E′j |γ (s) = Ajj (s; γ )
(
∂

∂xj

∣∣∣∣
γ (s)

)
. (4.4)

Define the functionsyi : η(J, V )→ R by

yi(η(s, t)) := δi ′i xi0+
∫ s

s0

(A−1)i1(u; γ ) du+ (A−1)ij (s; γ )[xj (η(s, t))− xj (γ (s))]

+f ijk(s, t; γ )[xj (η(s, t))− xj (γ (s))][xk(η(s, t))− xk(γ (s))] (4.5)

where s0 ∈ J and x0 ∈ η(J, V ) are fixed and the functionsf ijk together with their first
derivatives are bounded whent→ t0. Then, because ofη(·, t0) = γ , we find

∂yi

∂xj

∣∣∣∣
γ (s)

= ∂yi

∂xj

∣∣∣∣
η(s,t0)

= (A−1)ij (s; γ ). (4.6)
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As det[Aij (s; γ )] 6= 0,∞, from (4.6) it follows that the transformation{xi} → {yi} is
a diffeomorphism on some neighbourhood ofγ (J ) lying in U . So, in this neighbourhood
{yi} are local coordinates. The coordinate basic vectors onγ (J ) corresponding to them are
(see (4.6) and (4.4))

∂

∂yj

∣∣∣∣
γ (s)

=
(
∂xi

∂yj

∣∣∣∣
γ (s)

)
∂

∂xi

∣∣∣∣
γ (s)

= Aij (s; γ )
∂

∂xi

∣∣∣∣
γ (s)

= E′j |γ (s).

Hence{yi} are the local coordinates we are looking for. �
Lemma 4.1 also has a separate meaning: according to it any locally smooth basis

definedon γ (J ) can locally be extended to aholonomicbasisin a neighbourhood ofγ (J ).
Evidently, such an extension can also be done in an anholonomic way. Consequently, the
holonomicity problem for a basis defined only onγ (J ) depends on the way this basis is
extended in a neighbourhood ofγ (J ).

5. Derivations along a fixed vector field

Results, analogous to those of section 3, are true also forS-derivationsDX along afixed
vector fieldX (see section 2), in other words for a fixed derivation. This case is briefly
considered below.

Proposition 5.1.The S-derivationDX along a fixed vector fieldX is linear along a path
γ : J → M, i.e. (3.1) holds for that fixedX, iff along γ a normal frame{E′i} for DX exists,
i.e. one in which the components ofDX vanish onγ (J ).

Proof. If (3.1) is valid for the givenX, then by the proof of proposition 3.1, equation (3.2)
has solutionsA given by (3.3). Consequently in the basis{E′j = AijEi} we haveW ′X(γ (s)) =
[A−1(WXA + X(A))]|γ (s) = [(A−1Xk)|γ (s)][(0kA + Ek(A))|γ (s)] ≡ 0. Conversely, if in
{E′j = AijEi} we haveW ′X(γ (s)) = 0, then due to (2.2)(WXA + X(A))|γ (s) = 0 is valid,
i.e.WX(γ (s)) = 0k(γ (s))Xk(γ (s)) for 0k(γ (s)) = −[(Ek(A))A−1]|γ (s) for the fixed vector
field X. �

Evidently, infinitely many0k ’s can be found for which (3.1) holds for a fixedX.
Consequently, forDX with a fixedX normal frames along any pathγ always exist. These
frames will be explicitly constructed elsewhere for any subset ofM.

Proposition 5.2.The normal bases alongγ for DX for a fixedX are connected by linear
transformations whose matrices are such that the action ofX on them vanishes onγ (J ).

Proof. If in {Ei} and{E′j = AijEi} we haveWX(γ (s)) = W ′X(γ (s)) = 0, then due to (2.2)
X(A)|γ (s) = 0 is valid withA := [Aij ], i.e. X(A)|γ (J ) = 0. �

For a fixed vector fieldX the analogue of proposition 3.3 is, generally, not true. But if
for DX, X being fixed, (4.1) is valid onγ (J ), then we can construct a class ofS-derivations
{′D} whose components for everyX are given by (3.1). Evidently, for these derivations
proposition 3.3 holds. Thus we have proved it.

Proposition 5.3.If alongγ forDX with a fixedX (3.1) is valid and there is a local holonomic
(on γ (J )) normal frame alongγ for DX, then the above-described derivations{′D} are
torsion free onγ (J ). Conversely, if{′D} are torsion free onγ (J ) and there exists a smooth
normal frame forDX, then between them exist holonomic ones, but generally not all of
them are such.
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6. The case of linear connections

In this section we apply the preceding results about normal frames to the special case of a
linear connection∇.

Corollary 6.1. For any linear connection∇ there exists along every pathγ : J → M a field
of bases in which the components of∇ vanish onγ (J ). These bases are connected with
one another in the way described in proposition 3.2.

Proof. This result is a consequence from (2.3), propositions 3.1 and 3.2 and their proofs;
in the former of the proofs a basis with the necessary property is explicitly constructed.�
Corollary 6.2. One, and hence any, basis for a linear connection∇ which is smooth on
γ (J ) and normal along a pathγ : J → M, is holonomic if and only if∇ is torsion free on
γ (J ).

Remark. If γ is without self-intersections andγ (J ) lies in only one coordinate
neighbourhood, then holonomic normal bases exist (coordinates) for∇ on γ (J ) if ∇ is
torsion freeand vice versa, which is a well known fact [1–3, 11].

Proof. The statement follows from (2.3) and propositions 3.1 and 3.3. �
Corollary 6.3. Let ∇ be a torsion-free linear connection and the pathγ : J → M be
without self-intersections and lying in only one coordinate neighbourhood. Then for∇
normal coordinates exist onγ (J ), or, equivalently, locally holonomic normal bases.

Remark. This corollary reproduces a classical theorem that can be found, for instance, in
[3] or in [2, ch III, section 8], in the latter references to original papers are given.

Proof. The result follows from corollaries 6.1 and 6.2. �
Corollary 6.4. Let D

ds |γ := ∇γ̇ be the covariant derivative associated with∇ along theC1

pathγ : J → M. Then onγ (J ) normal frames for∇γ̇ exist. They are obtained from one
another by linear transformations whose coefficients are constant or depend only onγ . If
γ is without self-intersections andγ (J ) lies in only one coordinate neighbourhood, then in
some neighbourhood ofγ (J ) all of these normal frames can be extended in a holonomic
way.

Proof. The statement follows from propositions 4.1–4.3. �

7. Conclusion

The above investigation shows that under sufficiently general conditions there exist,
generally anholonomic, bases in which the components of a derivation of the tensor algebra
over a differentiable manifoldM vanish along a pathγ : J → M. These bases (frames)
are callednormal. When the derivations are along paths, then the corresponding normal
bases can always be taken as holonomic (or coordinate) ones. These results generalize a
series of analogous ones concerning linear connections and originating from [4].

A feature of the case along paths considered here is its independence of the derivation’s
curvature, which was not even introduced here. The cause for this is the one dimensionality
of the paths (curves) considered as submanifolds ofM. In this connection it is interesting
to consider the analogous problems on arbitrary submanifolds ofM, which will be done
elsewhere.

Now we shall briefly consider the relation of the results obtained in this paper with
the equivalence principle [7, 6]. According to it, the gravitational field strength, usually
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identified with the components of some linear connection, is transformable to zero at a
point by an appropriate choice of the local (called normal, geodesic, Riemannian, inertial,
or Lorentz) coordinates or reference frame (basis). So, from a mathematical point of view,
the equivalence principle states the existence of local bases in which the corresponding
connection’s components vanish at a point. The results of this investigation show the
strict validity of this statement along any path (curve). Hence, we can make the following
three conclusions: (i) any gravitational theory based on space-time with a linear connection
is compatible with the equivalence principle along every path, i.e. in it (local) inertial
frames along paths exist. These frames are generally anholonomic, but under some (not
very restrictive from a physical point of view) conditions on the paths (see lemma 4.1) such
holonomic frames of reference exist. (ii) In gravitational theories based on linear connections
the equivalence principle along paths must not be considered as a principle (in a sense of
an axiom) as it is identically fulfilled because of their mathematical background. (iii) If we
want the equivalence principle along paths to be valid in gravitational theories based on
some (class of) tensor derivations (cf [10, section V]), then this principle will select only the
theories based on linear connections, i.e. only those in which it is identically satisfied. In
fact, suppose the gravitational field strength to be locally identified with the components of
a certain tensor derivation. The equivalence principle along paths requires the gravitational
field strength along paths to vanish. So, this leads to the possibility of transforming the
components of the tensor derivation to zero alongany path. By proposition 3.1 this implies
the derivation to be linear along every path which is possible iff it is linear at every point,
i.e. iff it is a linear connection.
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